

Optimal tracking as a framework for normative synthesis of sensory networks

Sruti Mallik¹, ShiNung Ching^{1, 2}

¹ Department of Electrical & Systems Engineering, Washington University in St Louis, MO, USA

² Department of Biomedical Engineering, Washington University in St Louis, MO, USA

INTRODUCTION		✤ OBJECTIVES	
•	Sensory networks extract information about external stimuli through their activity.	1.	Can we systematically phrase sensory tasks as optimization problems?
•	The sensory modality of choice is the olfactory system.	2.	Can we identify biologically plausible neural architectures and functions from solution of these problems?
•	We use a normative, top-down modeling framework motivated by optimal control theory.	3.	Are the models predictive of observations made in biological networks?

MATHEMATICAL FORMULATION & SIMULATION RESULTS

Wi

W_oⁱ

representation in an energy efficient manner.

MATHEMATICAL FORMULATION & SIMULATION RESULTS

• PROBLEM 2: NEURAL ADAPTATION

Optimization framework:

argmin
$$\mathbb{J}_2(\mathbf{x}) = \mathbb{J}(\mathbf{x})$$

subject to $\tau_{\nu} \dot{\boldsymbol{\nu}} = -a_{\nu} (\boldsymbol{\nu} - \boldsymbol{\gamma}) + \mathbf{b}\mathbf{x}$
 $\tau_{\gamma} \dot{\boldsymbol{\gamma}} = -a_{\gamma} \boldsymbol{\gamma} + \beta \boldsymbol{\nu}$

Neural activity

Amplitude of peak response is found to decrease exponentially over repeated trials.

Post-processingtheoptimalsolutionyieldsresponsepatternsasobserved in *C. elegans.*

10

Time in mins

20

15

PROBLEM 3: LEARNING IN SENSORY NETWORKS

Optimization framework:

$$\underset{\mathbf{x}}{\operatorname{argmin}} \ \mathbb{J}_{3}(\mathbf{x}) = \mathbb{J}_{1}(\mathbf{x})|_{T=T_{f}} + \mathbb{J}_{T_{f}}(\mathbf{x})$$

Subject to $\dot{\boldsymbol{\nu}} = -a\boldsymbol{\nu} + \mathbf{b}\mathbf{f}(\mathbf{x})$

The nonlinear optimization problem is solved by iterative methods motivated by Pontyagrin's Maximum Principle.

Dynamics of learning over trials: $\dot{\mathbf{x}}_k(t) \leftarrow (1 - \eta_k) \dot{\mathbf{x}}_{k-1}(t) + \eta_k \Delta \dot{\mathbf{x}}_k(t)$

Convergence of the iterative algorithm indicates that the network has learnt an optimal strategy.

Dynamics of auxiliary 'critic' population: $\dot{\mathbf{x}}_{k}^{aux}(t) = W_{k}^{s}(t) \int_{0}^{t} e^{-a(t-\tau)} F(\mathbf{x}_{k}) \mathbf{x}_{k}^{aux}(\tau) d\tau + W_{k}^{f}(t) \mathbf{x}_{k}^{aux}(t) + W_{k}^{\theta}(t) h(t, \mathbf{x}_{k}(t), \mathbf{z})$

DISCUSSIONS

- The model can make predictions for sensory neural coding occurring at population level as well as single neuron level and along different timescales.
- The latent state variables can be used to drive behavioral decision making via a probabilistic decoder.

✤ REFERENCES

- [1] S. Mallik et al. "Neural circuit dynamics for sensory detection." (J. Neuroscience, 2020).
- [2] H. White, S. Mallik, S. Ching, B. Raman, D. Albrecht "Multiple timescale normative circuit model of *C. elegans* sensory adaptation and behavior." (CoSyne 2020)
- [3] D. Saha et al. "Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus." (Nature Communications 2017)
- [4] W. Li, E. Todorov "Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems" (Proc. of 1st
- International Conference on Informatics in Control, Automation and Robotics 2004)

✤ FUTURE SCOPE

- Investigating neural implementation of behavioral decision making.
- Modeling sensorimotor transformations using this framework and analyzing performance in comparison to living organisms.

✤ ACKNOWLEDGEMENT

Brain Dynamics and Control Research Group.

Collaborations:

Systems Neuroscience & Neuromorphic Engineering Lab

Dr. Baranidharan Raman

Principal Investigator:

ShiNung Ching

Quantitative Neurotechnology Lab

Dr. Dirk Albrecht

Funding:

NSF CAREER 1653589, NSF IIS-CRCNS 1724218