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❖ INTRODUCTION ❖ OBJECTIVES

1. Can we systematically phrase sensory tasks as
optimization problems?

2. Can we identify biologically plausible neural
architectures and functions from solution of
these problems?

3. Are the models predictive of observations made
in biological networks?

▪ Sensory networks extract information about
external stimuli through their activity.

▪ The sensory modality of choice is the olfactory
system.

▪ We use a normative, top-down modeling
framework motivated by optimal control
theory.



❖ MATHEMATICAL FORMULATION & SIMULATION RESULTS

• PROBLEM 1: SENSORY DETECTIONPremise:
High-dimensional
chemical stimuli

Low-dimensional
latent representation

Latent space: 𝝂 𝑡 = [𝜈1 𝑡 , … , 𝜈𝑚 𝑡 ]
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Optimization framework: 

argmin
𝐱

𝕁1 𝐱 = lim
𝑇→∞

𝕁(𝐱)

Subject to ሶ𝝂 = −𝑎𝝂 + 𝐛𝐱

After some numerical optimization…

Dynamical decoder 
maps neural activity to 
latent representation
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❖ MATHEMATICAL FORMULATION & SIMULATION RESULTS

• PROBLEM 3: LEARNING IN SENSORY NETWORKS• PROBLEM 2: NEURAL ADAPTATION

Optimization framework: Optimization framework: 

𝜏𝜈 ሶ𝝂 = −𝑎𝜈 (𝝂 − 𝜸) + 𝐛𝐱

𝜏𝛾 ሶ𝜸 = −𝑎𝛾𝜸 + 𝛽𝝂

argmin
𝐱

𝕁2 𝐱 = 𝕁(𝐱)

Subject to ሶ𝝂 = −𝑎𝝂 + 𝐛𝐟(𝐱)

argmin
𝐱

𝕁3 𝐱 = 𝕁1 𝐱 |𝑇=𝑇𝑓 + 𝕁𝑇𝑓 𝐱

Subject to 

Dynamics of learning over trials:

Dynamics of auxiliary ‘critic’ population:

The nonlinear optimization problem is solved by iterative 
methods motivated by Pontyagrin’s Maximum Principle. 

Convergence of the iterative algorithm
indicates that the network has learnt
an optimal strategy.
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Amplitude of peak response is
found to decrease exponentially
over repeated trials.

Post-processing the
optimal solution yields
response patterns as
observed in C. elegans.



❖ FUTURE SCOPE
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❖ DISCUSSIONS
▪ The model can make predictions for sensory neural coding occurring at 

population level as well as single neuron level and along different 
timescales. 

▪ The latent state variables can be used to drive behavioral decision making 
via a probabilistic decoder. 

▪ Investigating neural implementation of behavioral decision making. 

▪ Modeling sensorimotor transformations using this framework and
analyzing performance in comparison to living organisms.

▪ On chip implementation of the developed framework. 


